This example propagates a 1 particle continuous-time quantum walk on an infinite line
recieving command line options using PETSc
adding a diagonal defects to various nodes
creating node handles to watch the probability at specified nodes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #!/usr/bin/env python2.7
# initialize PETSc
import sys, petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import numpy as np
# import pyCTQW as qw
import pyCTQW.MPI as qw
# enable command line arguments -t and -N
OptDB = PETSc.Options()
N = OptDB.getInt('N', 100)
t = OptDB.getReal('t', 20)
# get the MPI rank
rank = PETSc.Comm.Get_rank(PETSc.COMM_WORLD)
if rank == 0:
print '1P Line\n'
# initialise an N (default 100) node graph CTQW
walk = qw.Line(N)
# Create a Hamiltonian with defect and amplitude as below.
d = [3,4]
amp = [2.0,1.5]
walk.createH(d,amp)
# create the initial state (1/sqrt(2)) (|0>+|1>)
init_state = [[0.,1.0/np.sqrt(2.0)], [1.,1.0/np.sqrt(2.0)]]
walk.createInitState(init_state)
# set the eigensolver properties.
walk.EigSolver.setEigSolver(tol=1.e-3)
# create a handle to watch the probability at nodes -5,0,1:
walk.watch([0,1,-5])
# Propagate the CTQW using the Chebyshev method
# for t=100s in timesteps of dt=0.01
# Note that psiToInit() is being used rather than global timesteps.
for i in range(int(t/0.01)):
walk.propagate(0.01,method='chebyshev')
walk.psiToInit()
# plot the marginal probabilities
# after propagation over all nodes
walk.plot('out/1p_line_plot.png')
# plot the probability over time for the watched nodes
walk.plotNodes('out/1p_line_nodes.png')
# export final state
walk.exportState("out/1p_final_state.txt", "txt")
# destroy the quantum walk
walk.destroy()
|