This example propagates a 3 particle continuous-time quantum walk on an infinite line
recieving command line options using PETSc
adding a diagonal defects to various nodes
same-node interactions between particles
probability vs node plot
Exporting the final state to a PETSc binary vector file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #!/usr/bin/env python2.7
# initialize PETSc
import sys, petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import numpy as np
# import pyCTQW as qw
import pyCTQW.MPI as qw
# enable command line arguments -t and -N
OptDB = PETSc.Options()
N = OptDB.getInt('N', 20)
t = OptDB.getReal('t', 2)
# get the MPI rank
rank = PETSc.Comm.Get_rank(PETSc.COMM_WORLD)
if rank == 0:
print '3P Line\n'
# initialise an N (default 20) node graph CTQW
walk = qw.Line3P(N)
# Create a Hamiltonian with 2P very strong interaction.
walk.createH(interaction=10.)
# create the initial state |0,4,4>
init_state = [[0,4,4,1.0]]
walk.createInitState(init_state)
# set the eigensolver properties.
walk.EigSolver.setEigSolver(tol=1.e-2)
# underestimate the minimum eigenvalue
walk.EigSolver.setEigSolver(emin_estimate=0)
# Propagate the CTQW using the Chebyshev method for t=2s
walk.propagate(t,method='chebyshev')
# plot the marginal probabilities
# after propagation over all nodes
walk.plot('out/3p_line_plot.png')
# destroy the quantum walk
walk.destroy()
|